Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
J Fluoresc ; 33(3): 1101-1110, 2023 May.
Article in English | MEDLINE | ID: covidwho-2303000

ABSTRACT

The neuro-stimulant anti-narcoleptic drug as modafinil (MOD) is used to treatment neurological conditions caused by COVID-19. MOD was used to treatment narcolepsy, shift-work sleep disorder, and obstructive sleep apnea-related sleepiness. So, an innovative, quick, economical, selective, and ecologically friendly procedure was carried out. A highly sensitive N@CQDs technique was created from green Eruca sativa leaves in about 4 min using microwave synthesis at 700 w. The quantum yield of the synthesized N@CQDs was found to be 41.39%. By increasing the concentration of MOD, the quantum dots' fluorescence intensity was gradually quenched. After being excited at 445 nm, the fluorescence reading was recorded at 515 nm. The linear range was found to be in the range 50 - 700 ng mL-1 with lower limit of quantitation (LOQ) equal to 45.00 ng mL-1. The current method was fully validated and bio analytically according to (US-FDA and ICH) guidelines. Full characterization of the N@CQDs has been conducted by high resolution transmission electron microscope (HRTEM), Zeta potential measurement, fluorescence, UV-VIS, and FTIR spectroscopy. Various experimental variables including pH, QDs concentration and the reaction time were optimized. The proposed study is simply implemented for the therapeutic drug monitoring system (TDMS) and various clinical laboratories for further pharmacokinetic research.


Subject(s)
COVID-19 , Quantum Dots , Humans , Quantum Dots/chemistry , Modafinil , Carbon/chemistry , Nitrogen/chemistry , Microwaves , Fluorescent Dyes/chemistry
2.
Biosensors (Basel) ; 12(11)2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2257300

ABSTRACT

In this work, carbon dots (CDs) were synthesized by a one-step hydrothermal method using citric acid and ethylene diamine, and covalently functionalized with antibodies for the sensing of progesterone hormone. The structural and morphological analysis reveals that the synthesized CDs are of average size (diameter 8-10 nm) and the surface functionalities are confirmed by XPS, XRD and FT-IR. Further graphene oxide (GO) is used as a quencher due to the fluorescence resonance energy transfer (FRET) mechanism, whereas the presence of the analyte progesterone turns on the fluorescence because of displacement of GO from the surface of CDs effectively inhibiting FRET efficiency due to the increased distance between donor and acceptor moieties. The linear curve is obtained with different progesterone concentrations with 13.8 nM detection limits (R2 = 0.974). The proposed optical method demonstrated high selectivity performance in the presence of structurally resembling interfering compounds. The PL intensity increased linearly with the increased progesterone concentration range (10-900 nM) under the optimal experimental parameters. The developed level-free immunosensor has emerged as a potential platform for simplified progesterone analysis due to the high selectivity performance and good recovery in different samples of spiked water.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Fluorescence Resonance Energy Transfer/methods , Biosensing Techniques/methods , Carbon/chemistry , Progesterone , Gold/chemistry , Metal Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared , Immunoassay , Antibodies
3.
J Colloid Interface Sci ; 634: 509-520, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2150008

ABSTRACT

Acetaminophen plays a key role in first-line Covid-19 cure as a supportive therapy of fever and pain. However, overdose of acetaminophen may give rise to severe adverse events such as acute liver failure in individual. In this work, 3D-hierarchical mesoporous carbon nanosheet (hMCNS) microspheres with superior properties were fabricated using simple and quick strategy and applied for sensitive quantification of acetaminophen in pharmaceutical formulation and rat plasmas after administration. The hMCNS microspheres are prepared via chemical etching of zinc oxide (ZnO) nanoparticles from a zinc-gallic acid precursor composite (Zn-GA) synthesized by high-temperature anaerobic pyrolysis. The obtained hMCNS could enhance analytes accessibility and accelerate proton transfer in the interface, hence increasing the electrochemical performance. Under optimized experimental conditions, the proposed electrochemical sensor achieves a detection limit of 3.5 nM for acetaminophen. The prepared electrochemical sensor has been successfully applied for quantification of acetaminophen in pharmaceutical formulations and the rat plasma samples before and after administration. Meanwhile, this sensor is compared with high-performance liquid chromatography (HPLC) as a reference technology, showing an excellent accuracy. Such an electrochemical sensor has great potential and economic benefits for applications in the fields of pharmaceutical assay and therapeutic drug monitoring (TDM).


Subject(s)
Acetaminophen , COVID-19 , Animals , Rats , Acetaminophen/analysis , Carbon/chemistry , Pharmaceutical Preparations , Zinc , Electrochemical Techniques/methods , Electrodes
4.
Bioelectrochemistry ; 150: 108329, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2149380

ABSTRACT

This present study is the first investigation of pazopanib-dsDNA binding using bare and modified GCE. The interaction was mainly evaluated based on the decrease of voltammetric signal of deoxyadenosine by differential pulse voltammetry using three different ways, including the incubated solutions, dsDNA biosensor, and nanobiosensor. The nanobiosensor was fabricated with the help of SnO2 nanoparticles and carbon hybrid material. The carbon material is derived from the waste mask, the most used personal protective equipment for the ongoing COVID-19 pandemic. Both materials were synthesized via the green synthesis technique and characterized by various techniques, including BET, TEM, SEM-EDX, AFM, XPS, and XRD. Spectrophotometric and molecular docking studies also evaluated the pazopanib-dsDNA binding. All calculations showed that pazopanib (PZB) was active in the minor grove region of DNA.


Subject(s)
Antineoplastic Agents , Biosensing Techniques , COVID-19 , Nanoparticles , Humans , Carbon/chemistry , Molecular Docking Simulation , Masks , Pandemics , Nanoparticles/chemistry , DNA/chemistry , Biosensing Techniques/methods , Electrodes , Electrochemical Techniques/methods
5.
Anal Chim Acta ; 1242: 340716, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2149181

ABSTRACT

In this research, by using aptamer-conjugated gold nanoparticles (aptamer-AuNPs) and a modified glassy carbon electrode (GCE) with reduced graphene oxide (rGO) and Acropora-like gold (ALG) nanostructure, a sandwich-like system provided for sensitive detection of heat shock protein 70 kDa (HSP70), which applied as a functional biomarker in diagnosis/prognosis of COVID-19. Initially, the surface of the GCE was improved with rGO and ALG nanostructures, respectively. Then, an aptamer sequence as the first part of the bioreceptor was covalently bound on the surface of the GCE/rGO/ALG nanostructures. After adding the analyte, the second part of the bioreceptor (aptamer-AuNPs) was immobilized on the electrode surface to improve the diagnostic performance. The designed aptasensor detected HSP70 in a wide linear range, from 5 pg mL-1 to 75 ng mL-1, with a limit of detection (LOD) of ∼2 pg mL-1. The aptasensor was stable for 3 weeks and applicable in detecting 40 real plasma samples of COVID-19 patients. The diagnostic sensitivity and specificity were 90% and 85%, respectively, compared with the reverse transcription-polymerase chain reaction (RT-PCR) method.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Graphite , Metal Nanoparticles , Humans , Gold/chemistry , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , COVID-19/diagnosis , Graphite/chemistry , Carbon/chemistry , Limit of Detection , Prognosis , Electrochemical Techniques/methods , Biosensing Techniques/methods , Electrodes , COVID-19 Testing
6.
Anal Chim Acta ; 1232: 340442, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2104217

ABSTRACT

In the present work, we report an innovative approach for immunosensors construction. The experimental strategy is based on the anchoring of biological material at screen-printed carbon electrode (SPE) modified with electrodeposited Graphene Quantum Dots (GQD) and polyhydroxybutyric acid (PHB). It was used as functional substract basis for the recognition site receptor-binding domain (RBD) from coronavirus spike protein (SARS-CoV-2), for the detection of Anti-S antibodies (AbS). SEM images and EDS spectra suggest an interaction of the protein with GQD-PHB sites at the electrode surface. Differential pulse voltametric (DPV) measurements were performed before and after incubation, in presence of the target, shown a decrease in voltametric signal of an electrochemical probe ([Fe(CN)6]3/4-). Using the optimal experimental conditions, analytical curves were performed in PBS and human serum spiked with AbS showing a slight matrix effect and a relationship between voltametric signal and AbS concentration in the range of 100 ng mL-1 and 10 µg mL-1. The selectivity of the proposed sensor was tested against yellow fever antibodies (YF) and the selective layer on the electrode surface did not interact with these unspecific antibodies. Eight samples of blood serum were analyzed and 87.5% of these total investigated provided adequate results. In addition, the present approach showed better results against traditional EDC/NHS reaction with enhancements in time and the possibility to develop an immunosensor in a single drop, since the proteins can be anchored prior to the electrode modification step.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Quantum Dots , Humans , Graphite/chemistry , Quantum Dots/chemistry , SARS-CoV-2 , Electrochemical Techniques/methods , Spike Glycoprotein, Coronavirus , Limit of Detection , Immunoassay , Electrodes , Carbon/chemistry , Antibodies
7.
ACS Nano ; 16(9): 14239-14253, 2022 Sep 27.
Article in English | MEDLINE | ID: covidwho-1991501

ABSTRACT

Limitations of the recognition elements in terms of synthesis, cost, availability, and stability have impaired the translation of biosensors into practical use. Inspired by nature to mimic the molecular recognition of the anti-SARS-CoV-2 S protein antibody (AbS) by the S protein binding site, we synthesized the peptide sequence of Asn-Asn-Ala-Thr-Asn-COOH (abbreviated as PEP2003) to create COVID-19 screening label-free (LF) biosensors based on a carbon electrode, gold nanoparticles (AuNPs), and electrochemical impedance spectroscopy. The PEP2003 is easily obtained by chemical synthesis, and it can be adsorbed on electrodes while maintaining its ability for AbS recognition, further leading to a sensitivity 3.4-fold higher than the full-length S protein, which is in agreement with the increase in the target-to-receptor size ratio. Peptide-loaded LF devices based on noncovalent immobilization were developed by affording fast and simple analyses, along with a modular functionalization. From studies by molecular docking, the peptide-AbS binding was found to be driven by hydrogen bonds and hydrophobic interactions. Moreover, the peptide is not amenable to denaturation, thus addressing the trade-off between scalability, cost, and robustness. The biosensor preserves 95.1% of the initial signal for 20 days when stored dry at 4 °C. With the aid of two simple equations fitted by machine learning (ML), the method was able to make the COVID-19 screening of 39 biological samples into healthy and infected groups with 100.0% accuracy. By taking advantage of peptide-related merits combined with advances in surface chemistry and ML-aided accuracy, this platform is promising to bring COVID-19 biosensors into mainstream use toward straightforward, fast, and accurate analyses at the point of care, with social and economic impacts being achieved.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Biosensing Techniques/methods , COVID-19/diagnosis , COVID-19 Testing , Carbon/chemistry , Electrochemical Techniques , Electrodes , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Molecular Docking Simulation , Peptides/chemistry
8.
Biosensors (Basel) ; 12(8)2022 Aug 03.
Article in English | MEDLINE | ID: covidwho-1969093

ABSTRACT

In this research, we assessed the applicability of electrochemical sensing techniques for detecting specific antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins in the blood serum of patient samples following coronavirus disease 2019 (COVID-19). Herein, screen-printed carbon electrodes (SPCE) with electrodeposited gold nanostructures (AuNS) were modified with L-Cysteine for further covalent immobilization of recombinant SARS-CoV-2 spike proteins (rSpike). The affinity interactions of the rSpike protein with specific antibodies against this protein (anti-rSpike) were assessed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods. It was revealed that the SPCE electroactive surface area increased from 1.49 ± 0.02 cm2 to 1.82 ± 0.01 cm2 when AuNS were electrodeposited, and the value of the heterogeneous electron transfer rate constant (k0) changed from 6.30 × 10-5 to 14.56 × 10-5. The performance of the developed electrochemical immunosensor was evaluated by calculating the limit of detection and limit of quantification, giving values of 0.27 nM and 0.81 nM for CV and 0.14 nM and 0.42 nM for DPV. Furthermore, a specificity test was performed with a solution of antibodies against bovine serum albumin as the control aliquot, which was used to assess nonspecific binding, and this evaluation revealed that the developed rSpike-based sensor exhibits low nonspecific binding towards anti-rSpike antibodies.


Subject(s)
Biosensing Techniques , COVID-19 , Nanostructures , Antibodies , Biosensing Techniques/methods , COVID-19/diagnosis , Carbon/chemistry , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Humans , Immunoassay/methods , Limit of Detection , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
9.
J Colloid Interface Sci ; 627: 978-991, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1956194

ABSTRACT

Surgical face masks waste is a source of microplastics (polymer fibres) and inorganic and organic compounds potentially hazardous for aquatic organisms during degradation in water. The monthly use of face masks in the world is about 129 billion for 7.8 billion people. Therefore, in this contribution the utilization of hazardous surgical face masks waste for fabrication of carbon-based electrode materials via KOH-activation and carbonization was investigated. The micro-mesoporous materials were obtained with specific surface areas in the range of 460 - 969 m2/g and a total pore volume of 0.311 - 0.635 cm3/g. The optimal sample showed superior electrochemical performance as an electrode material in supercapacitor in the three-electrode system, attaining 651.1F/g at 0.1 Ag-1 and outstanding capacitance retention of 98 % after a test cycle involving 50'000 cycles. It should be emphasized that capacitance retention is one of the most crucial requirements for materials used as the electrodes in the supercapacitor devices. In this strategy, potentially contaminated face masks, common pandemic waste, is recycled into highly valuable carbon material which can serve in practical applications overcoming the global energy crisis. What is more, all microorganisms, including coronaviruses that may be on/in the masks, are completely inactivated during KOH-activation and carbonization.


Subject(s)
Microplastics , Plastics , Carbon/chemistry , Humans , Masks , Polymers , Porosity , Water
10.
Anal Methods ; 14(26): 2631-2641, 2022 07 07.
Article in English | MEDLINE | ID: covidwho-1900675

ABSTRACT

In this work, a simple, low-cost and easy-to-handle analytical procedure based on carbon quantum dots (CQDs) is proposed to check commercially available formulated microbicides that are used to mitigate the transmission of viruses, such as SARS-COV-2, or bacterial diseases. For this purpose, CQDs were synthesized via pyrolysis using citric acid and ethylenediamine as precursors to produce an intense fluorescence that is used to measure the concentration of hypochlorite, an important biocidal agent present in sanitizing mats, by quenching mechanisms. The characterization of the CQDs was performed using IR spectrophotometry, UV-Vis spectrophotometry, spectrofluorometry, thermogravimetric analysis, scanning electron microscopy, dynamic light scattering, X-ray diffraction, energy-dispersive spectroscopy, and zeta potential measurements. For analytical purposes, fluorescence was measured in a UV chamber irradiated using an LED with the maximum emission at 350 nm. A smartphone was coupled to the UV chamber to measure the fluorescence quenching due to the presence of hypochlorite, and further the digital images were decomposed by RGB data using free software. Tests of pH, CQD concentration and stability of the fluorescence emitted were performed. The stability study of the fluorescence emitted by the CQD solution showed a relative standard deviation lower than 5.0%. The fluorescence digital image-based (FDIB) method resulted in a linear range from 17.44 µmol L-1 to 90.0 µmol L-1 with an LOD of 3.30 µmol L-1 for the determination of hypochlorite using a microplate made of PLA (polylactic acid) customized using a 3D printer. Furthermore, the hypochlorite concentration was tested in situ for its compliance in a sanitizing mat, in a real use situation (daily, a group of four people, each one kept their feet on the mat for 30 s). After 2.5 h, the monitored concentration of hypochlorite was 0.04953% (w/v) or 7.63 mmol L-1, and therefore, it was inefficient to act as a sanitizing agent. Thus, for the first time in the literature, an FDIB method with CQDs is used to verify in situ microbicide practices with a fast and low-cost analytical procedure.


Subject(s)
COVID-19 , Quantum Dots , Carbon/chemistry , Carbon/pharmacology , Humans , Hypochlorous Acid , Quantum Dots/chemistry , SARS-CoV-2
11.
Biosensors (Basel) ; 12(3)2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1725509

ABSTRACT

Worldwide, human health is affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, the fabrication of the biosensors to diagnose SARS-CoV-2 is critical. In this paper, we report an electrochemical impedance spectroscopy (EIS)-based aptasensor for the determination of the SARS-CoV-2 receptor-binding domain (SARS-CoV-2-RBD). For this purpose, the carbon nanofibers (CNFs) were first decorated with gold nanoparticles (AuNPs). Then, the surface of the carbon-based screen-printed electrode (CSPE) was modified with the CNF-AuNP nanocomposite (CSPE/CNF-AuNP). After that, the thiol-terminal aptamer probe was immobilized on the surface of the CSPE/CNF-AuNP. The surface coverage of the aptamer was calculated to be 52.8 pmol·cm-2. The CSPE/CNF-AuNP/Aptamer was then used for the measurement of SARS-CoV-2-RBD by using the EIS method. The obtained results indicate that the signal had a linear-logarithmic relationship in the range of 0.01-64 nM with a limit of detection of 7.0 pM. The proposed aptasensor had a good selectivity to SARS-CoV-2-RBD in the presence of human serum albumin; human immunoglobulins G, A, and M, hemagglutinin, and neuraminidase. The analytical performance of the aptasensor was studied in human saliva samples. The present study indicates a practical application of the CSPE/CNF-AuNP/Aptamer for the determination of SARS-CoV-2-RBD in human saliva samples with high sensitivity and accuracy.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Metal Nanoparticles , Nanocomposites , Nanofibers , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , COVID-19/diagnosis , Carbon/chemistry , Dielectric Spectroscopy , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Humans , Limit of Detection , Metal Nanoparticles/chemistry , Nanofibers/chemistry , SARS-CoV-2
12.
Int J Biol Macromol ; 206: 115-147, 2022 May 01.
Article in English | MEDLINE | ID: covidwho-1697104

ABSTRACT

Thanks to their unique attributes, such as good sensitivity, selectivity, high surface-to-volume ratio, and versatile optical and electronic properties, fluorescent-based bioprobes have been used to create highly sensitive nanobiosensors to detect various biological and chemical agents. These sensors are superior to other analytical instrumentation techniques like gas chromatography, high-performance liquid chromatography, and capillary electrophoresis for being biodegradable, eco-friendly, and more economical, operational, and cost-effective. Moreover, several reports have also highlighted their application in the early detection of biomarkers associated with drug-induced organ damage such as liver, kidney, or lungs. In the present work, we comprehensively overviewed the electrochemical sensors that employ nanomaterials (nanoparticles/colloids or quantum dots, carbon dots, or nanoscaled metal-organic frameworks, etc.) to detect a variety of biological macromolecules based on fluorescent emission spectra. In addition, the most important mechanisms and methods to sense amino acids, protein, peptides, enzymes, carbohydrates, neurotransmitters, nucleic acids, vitamins, ions, metals, and electrolytes, blood gases, drugs (i.e., anti-inflammatory agents and antibiotics), toxins, alkaloids, antioxidants, cancer biomarkers, urinary metabolites (i.e., urea, uric acid, and creatinine), and pathogenic microorganisms were outlined and compared in terms of their selectivity and sensitivity. Altogether, the small dimensions and capability of these nanosensors for sensitive, label-free, real-time sensing of chemical, biological, and pharmaceutical agents could be used in array-based screening and in-vitro or in-vivo diagnostics. Although fluorescent nanoprobes are widely applied in determining biological macromolecules, unfortunately, they present many challenges and limitations. Efforts must be made to minimize such limitations in utilizing such nanobiosensors with an emphasis on their commercial developments. We believe that the current review can foster the wider incorporation of nanomedicine and will be of particular interest to researchers working on fluorescence technology, material chemistry, coordination polymers, and related research areas.


Subject(s)
Biosensing Techniques , Nanoparticles , Nanostructures , Quantum Dots , Biosensing Techniques/methods , Carbon/chemistry , Coloring Agents
13.
Sci Total Environ ; 817: 152995, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1616761

ABSTRACT

With the spread of COVID-19, disposable medical masks (DMMs) have become a significant source of new hazardous solid waste. Their proper disposal is not only beneficial to the safety of biological systems but also useful to achieve considerable economic value. The first step of this study was to investigate the chemical composition of DMMs. It is primarily composed of polypropylene, polyethylene terephthalate and iron, with fibrous polypropylene accounting for approximately 80% of the total weight. Then, DMMs were sulfonated and oxidised by the microwave-driven concentrated sulfuric acid within 8 min based on the fact that the concentrated sulfuric acid exhibits a good microwave absorption capacity. The co-doping of sulfur and oxygen was achieved while improving the thermal stability of DMMs. Subsequently, the self-activation pyrolysis of sulfonated and oxidised DMMs (P-SO@DMMs) was further realized in low-flow-rate argon. The specific surface area of P-SO@DMMs increased from 2.0 to 830.9 m2·g-1. P-SO@DMMs sulfur cathodes have promising electrochemical properties because of their porous structures and the synergistic effect of sulfur and oxygen co-doping. The capacity of the samples irradiated by microwave for 10 min at 0.1, 0.2, 0.5, 1, 2 and 5 C were 1313.6, 1010.9, 816.5, 634.4, 513.4 and 453.1 mAh·g-1, respectively, and after returning to 0.2 C and continuing the cycle for 50 revolutions, maintained 50.5% of the initial capacity. After 400 cycles, its capacity is 38.1% of the initial capacity at 0.5 C. It is slightly higher than the electrochemical performance of the sample treated by microwave for 8 min and significantly higher than the sample treated by 6 min. This work converts structurally complex, biohazardous DMMs into porous carbon with high specific surface area by clean and efficient microwave solvothermal and self-activating pyrolysis, which facilitates the development of carbon based materials at low cost and large scale.


Subject(s)
COVID-19 , Lithium , Carbon/chemistry , Humans , Lithium/chemistry , Masks , Microwaves , Porosity , SARS-CoV-2 , Sulfur/chemistry
14.
Mikrochim Acta ; 188(12): 430, 2021 11 25.
Article in English | MEDLINE | ID: covidwho-1530326

ABSTRACT

Recent experience with the COVID-19 pandemic should be a lesson learnt with respect to the effort we have to invest in the development of new strategies for the treatment of viral diseases, along with their cheap, easy, sensitive, and selective detection. Since we live in a globalized world where just hours can play a crucial role in the spread of a virus, its detection must be as quick as possible. Thanks to their chemical stability, photostability, and superior biocompatibility, carbon dots are a kind of nanomaterial showing great potential in both the detection of various virus strains and a broad-spectrum antiviral therapy. The biosensing and antiviral properties of carbon dots can be tuned by the selection of synthesis precursors as well as by easy post-synthetic functionalization. In this review, we will first summarize current options of virus detection utilizing carbon dots by either electrochemical or optical biosensing approaches. Secondly, we will cover and share the up-to-date knowledge of carbon dots' antiviral properties, which showed promising activity against various types of viruses including SARS-CoV-2. The mechanisms of their antiviral actions will be further adressed as well. Finally, we will discuss the advantages and distadvantages of the use of carbon dots in the tangled battle against viral infections in order to provide valuable informations for further research and development of new virus biosensors and antiviral therapeutics.


Subject(s)
COVID-19 Drug Treatment , COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/therapy , Carbon/chemistry , Quantum Dots , Antiviral Agents/pharmacology , Biocompatible Materials , Biosensing Techniques , Electrochemistry , Humans , Molecular Targeted Therapy , Nanostructures , Phototherapy , Polymers , SARS-CoV-2 , Virus Diseases
15.
Int J Mol Sci ; 22(14)2021 Jul 14.
Article in English | MEDLINE | ID: covidwho-1323261

ABSTRACT

Good health, of vital importance in order to carry out our daily routine, consists of both physical and mental health. Tyrosine (Tyr) deficiency as well as its excess are issues that can affect mental health and can generate disorders such as depression, anxiety, or stress. Tyr is the amino acid (AA) responsible for maintaining good mental health, and for this reason, the present research presents the development of new electrochemical sensors modified with polypyrrole (PPy) doped with different doping agents such as potassium hexacyanoferrate (II) (FeCN), sodium nitroprusside (NP), and sodium dodecyl sulfate (SDS) for a selective and sensitive detection of Tyr. The development of the sensors was carried out by chronoamperometry (CA) and the electrochemical characterization was carried out by cyclic voltammetry (CV). The detection limits (LOD) obtained with each modified sensor were 8.2 × 10-8 M in the case of PPy /FeCN-SPCE, 4.3 × 10-7 M in the case of PPy/NP-SPCE, and of 3.51 × 10-7 M in the case of PPy/SDS-SPCE, thus demonstrating a good sensitivity of these sensors detecting L-Tyr. The validation of sensors was carried out through quantification of L-Tyr from three pharmaceutical products by the standard addition method with recoveries in the range 99.92-103.97%. Thus, the sensors present adequate selectivity and can be used in the pharmaceutical and medical fields.


Subject(s)
Carbon/chemistry , Electrodes , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/chemistry , Polymers/chemistry , Pyrroles/chemistry , Tyrosine/analysis , Electrochemical Techniques
16.
Faraday Discuss ; 226: 112-137, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1253998

ABSTRACT

Air quality in megacities is significantly impacted by emissions from vehicles and other urban-scale human activities. Amid the outbreak of Coronavirus (COVID-19) in January 2020, strict policies were in place to restrict people's movement, bringing about steep reductions in pollution activities and notably lower ambient concentrations of primary pollutants. In this study, we report hourly measurements of fine particulate matter (i.e., PM2.5) and its comprehensive chemical speciation, including elemental and molecular source tracers, at an urban site in Shanghai spanning a period before the lockdown restriction (BR) (1 to 23 Jan. 2020) and during the restriction (DR) (24 Jan. to 9 Feb. 2020). The overall PM2.5 was reduced by 27% from 56.2 ± 40.9 (BR) to 41.1 ± 25.3 µg m-3 (DR) and the organic carbon (OC) in PM2.5 was similar, averaged at 5.45 ± 2.37 (BR) and 5.42 ± 1.75 µgC m-3 (DR). Reduction in nitrate was prominent, from 18.1 (BR) to 9.2 µg m-3 (DR), accounting for most of the PM2.5 decrease. Source analysis of PM2.5 using positive matrix factorization modeling of comprehensive chemical composition, resolved nine primary source factors and five secondary source factors. The quantitative source analysis confirms reduced contributions from primary sources affected by COVID-19, with vehicular emissions showing the largest drop, from 4.6 (BR) to 0.61 µg m-3 (DR) and the percentage change (-87%) in par with vehicle traffic volume and fuel sale statistics (-60% to -90%). In the same time period, secondary sources are revealed to vary in response to precursor reductions from the lockdown, with two sources showing consistent enhancement while the other three showing reductions, highlighting the complexity in secondary organic aerosol formation and the nonlinear response to broad primary precursor pollutants. The combined contribution from the two secondary sources to PM2.5 increased from 7.3 ± 6.6 (BR) to 14.8 ± 9.3 µg m-3 (DR), partially offsetting the reductions from primary sources and nitrate while their increased contribution to OC, from 1.6 ± 1.4 (BR) to 3.2 ± 2.0 µgC m-3 (DR), almost offset the decrease coming from the primary sources. Results from this work underscore challenges in predicting the benefits to PM2.5 improvement from emission reductions of common urban primary sources.


Subject(s)
COVID-19/pathology , Carbon/analysis , Particulate Matter/analysis , Biomass , COVID-19/virology , Carbon/chemistry , China , Cluster Analysis , Environmental Monitoring/methods , Humans , Nitrates/analysis , Quarantine , SARS-CoV-2/isolation & purification
17.
Mikrochim Acta ; 188(6): 199, 2021 05 26.
Article in English | MEDLINE | ID: covidwho-1245646

ABSTRACT

Since the COVID-19 disease caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) was declared a pandemic, it has spread rapidly, causing one of the most serious outbreaks in the last century. Reliable and rapid diagnostic tests for COVID-19 are crucial to control and manage the outbreak. Here, a label-free square wave voltammetry-based biosensing platform for the detection of SARS-CoV-2 in nasopharyngeal samples is reported. The sensor was constructed on screen-printed carbon electrodes coated with gold nanoparticles. The electrodes were functionalized using 11-mercaptoundecanoic acid (MUA) which was used for the immobilization of an antibody against SARS-CoV-2 nucleocapsid protein (N protein). The binding of the immunosensor with the N protein caused a change in the electrochemical signal. The detection was realised by measuring the change in reduction peak current of a redox couple using square wave voltammetry at 0.04 V versus Ag ref. electrode on the immunosensor upon binding with the N protein. The electrochemical immunosensor showed high sensitivity with a linear range from 1.0 pg.mL-1 to 100 ng.mL-1 and a limit of detection of 0.4 pg.mL-1 for the N protein in PBS buffer pH 7.4. Moreover, the immunosensor did not exhibit significant response with other viruses such as HCoV, MERS-CoV, Flu A and Flu B, indicating the high selectivity of the sensor for SARS-CoV-2. However, cross reactivity of the biosensor with SARS-CoV is indicated, which gives ability of the sensor to detect both SARS-CoV and SARS-CoV-2. The biosensor was successfully applied to detect the SARS-CoV-2 virus in clinical samples showing good correlation between the biosensor response and the RT-PCR cycle threshold values. We believe that the capability of miniaturization, low-cost and fast response of the proposed label-free electrochemical immunosensor will facilitate the point-of-care diagnosis of COVID 19 and help prevent further spread of infection.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/analysis , Electrochemical Techniques/methods , Immunoassay/methods , SARS-CoV-2/chemistry , Antibodies, Immobilized/immunology , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , COVID-19 Testing/instrumentation , Carbon/chemistry , Coronavirus Nucleocapsid Proteins/immunology , Electrochemical Techniques/instrumentation , Electrodes , Fatty Acids/chemistry , Gold/chemistry , Humans , Immunoassay/instrumentation , Limit of Detection , Metal Nanoparticles/chemistry , Nasopharynx/virology , Phosphoproteins/analysis , Phosphoproteins/immunology , Sulfhydryl Compounds/chemistry
18.
Ecotoxicol Environ Saf ; 219: 112357, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1233412

ABSTRACT

The coronavirus disease-19 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is rampant in the world and is a serious threat to global health. The SARS-CoV-2 RNA has been detected in various environmental media, which speeds up the pace of the virus becoming a global biological pollutant. Because many engineered nanomaterials (ENMs) are capable of inducing anti-microbial activity, ENMs provide excellent solutions to overcome the virus pandemic, for instance by application as protective coatings, biosensors, or nano-agents. To tackle some mechanistic issues related to the impact of ENMs on SARS-CoV-2, we investigated the molecular interactions between carbon nanoparticles (CNPs) and a SARS-CoV-2 RNA fragment (i.e., a model molecule of frameshift stimulation element from the SARS-CoV-2 RNA genome) using molecular mechanics simulations. The interaction affinity between the CNPs and the SARS-CoV-2 RNA fragment increased in the order of fullerenes < graphenes < carbon nanotubes. Furthermore, we developed quantitative structure-activity relationship (QSAR) models to describe the interactions of 17 different types of CNPs from three dimensions with the SARS-CoV-2 RNA fragment. The QSAR models on the interaction energies of CNPs with the SARS-CoV-2 RNA fragment show high goodness-of-fit and robustness. Molecular weight, surface area, and the sum of degrees of every carbon atom were found to be the primary structural descriptors of CNPs determining the interactions. Our research not only offers a theoretical insight into the adsorption/separation and inactivation of SARS-CoV-2, but also allows to design novel ENMs which act efficiently on the genetic material RNA of SARS-CoV-2. This contributes to minimizing the challenge of time-consuming and labor-intensive virus experiments under high risk of infection, whilst meeting our precautionary demand for options to handle any new versions of the coronavirus that might emerge in the future.


Subject(s)
Carbon/chemistry , Nanoparticles/chemistry , RNA, Viral/chemistry , SARS-CoV-2 , Models, Chemical , Nucleic Acid Conformation , Quantitative Structure-Activity Relationship
19.
Inorg Chem ; 60(9): 6585-6599, 2021 May 03.
Article in English | MEDLINE | ID: covidwho-1195597

ABSTRACT

Silver vanadate nanorods (ß-AgVO3) with silver nanoparticles (Ag-NPs) decorated on the surface of the rods were synthesized by using simple hydrothermal technique and later anchored onto nitrogen-doped reduced graphene oxide (N-rGO) to make a novel nanocomposite. Experimental analyses were carried out to identify the electronic configuration by X-ray diffraction analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis, which revealed monoclinic patterns of the C12/m1 space group with Wulff construction forming beta silver vanadate (ß-AgVO3) crystals with optical density and phase transformations. Ag nucleation showed consistent results with metallic formation and electronic changes occurring in [AgO5] and [AgO3] clusters. Transmission electron microscopy and field-emission scanning electron microscopy with elemental mapping and EDX analysis of the morphology reveals the nanorod structure for ß-AgVO3 with AgNPs on the surface and sheets for N-rGO. Additionally, a novel electrochemical sensor is constructed by using Ag/AgVO3/N-rGO on screen-printed carbon paste electrodes for the detection of antiviral drug levofloxacin (LEV) which is used as a primary antibiotic in controlling COVID-19. Using differential pulse voltammetry, LEV is determined with a low detection limit of 0.00792 nm for a linear range of 0.09-671 µM with an ultrahigh sensitivity of 152.19 µA µM-1 cm-2. Furthermore, modified electrode performance is tested by real-time monitoring using biological and river samples.


Subject(s)
Dielectric Spectroscopy/instrumentation , Dielectric Spectroscopy/methods , Levofloxacin/analysis , Nanocomposites/chemistry , Antiviral Agents/analysis , Antiviral Agents/blood , Antiviral Agents/urine , Carbon/chemistry , Electrodes , Graphite/chemistry , Humans , Levofloxacin/blood , Levofloxacin/urine , Limit of Detection , Metal Nanoparticles/chemistry , Microscopy, Electron, Transmission , Nanotubes/chemistry , Photoelectron Spectroscopy , Silver/chemistry , Silver Compounds/chemistry , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Tablets , Vanadates/chemistry , X-Ray Diffraction
20.
J Colloid Interface Sci ; 592: 342-348, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1107283

ABSTRACT

Facemasks are considered the most effective means for preventing infection and spread of viral particles. In particular, the coronavirus (COVID-19) pandemic underscores the urgent need for developing recyclable facemasks due to the considerable environmental damage and health risks imposed by disposable masks and respirators. We demonstrate synthesis of nanoporous membranes comprising carbon dots (C-dots) and poly(vinylidene fluoride) (PVDF), and demonstrate their potential use for recyclable, self-sterilized facemasks. Notably, the composite C-dot-PVDF films exhibit hydrophobic surface which prevents moisture accumulation and a compact nanopore network which allows both breathability as well as effective filtration of particles above 100 nm in diameter. Particularly important, self-sterilization occurs upon short solar irradiation of the membrane, as the embedded C-dots efficiently absorb visible light, concurrently giving rise to elevated temperatures through heat dissipation.


Subject(s)
COVID-19/prevention & control , Carbon/chemistry , Masks/virology , Nanopores , SARS-CoV-2 , Sterilization , Sunlight , COVID-19/transmission , Humans
SELECTION OF CITATIONS
SEARCH DETAIL